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ABSTRACT

The paper analyzes the h~-p version of the finite element method in

two dimensions. It proves that the error “e”E of the method measured iu

. 3
" the energy norm decreases exponentially: HeuE < Ce'b A where N 1is the

number of degrees of freedom. The exact solution, which is approximated by
K the finite element method, is assumed to belong to the space Bé 2. This
4 space contains the solutions of the problems of elliptic partial differential

equations with piecewise analytic data, such as, when the domain has corners,

the boundary conditions and the coefficients of the equations are piecewise

MR

analytic, etc. Extensive computational analysis with the code PROBE, shows
the practical effectivity of the h-p version,>and the applicability

of the thecretical asymptotic error estimates in the range of engineering

NN NINT
LR R .

computations and accuracy.
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1. INTRODUCTION

The h, p and h~p versions are the three basic approaches of the finite
element method when the finite dimensional subspace is composed of plecewise
polynomials defined on a partition of a given domain. The convergence is
achieved by increasing the dimension of the finite element subspace in three
different ways.

The first one is called the h-version when the degree p of the
polynomials is fixed (at a low value) and the mesh size h is reduced to
obtain the desired accuracy. The h-version has been investigated theoretically
and practically for many years. There are many computer programs of the
h-version which are used in engineering. One of the popular codes is for example
NASTRAN in its various versions, e.g. MCS/NASTRAN and others are ADINA, ANSYS,
etc.

In the p-version the mesh is fixed and the degree p of the polynomials
is increased in order to reduce the approximation error. The development of
the p-version is very recent. PROBE is currently the only commerical code
(released in 1985) using the p and h-p versicms.

The h-p version combines the h and p-versions.

The p-version was first theoretically studied in [ 7]. The h-p version
was addressed in [3]. It was conjectured there that it is possible to achieve
exponential rate convergence in the cases of practical importance. For
additional features of the p-version we refer also to [g]. The p-version
in three dimensions was analyzed in [12], [13] and for the detailed analysis
of the p and h-p version in ene dimension see [16 ]. For the engineerings

and implementational aspect of the p and h-p version we refer to [4].
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It has been proven that the rate of convergence for the p-version
cannot be worse than that of the h-version with a quasiuniform mesh [7].
If the singularity of the solution is located at vertices, then the rate of
convergence of the p-version is at least twice that of the h-version with
quasiuniform mesh. It will be shown in this paper that under proper assumptions
satisfied usually in practice, the h-p version has exponential rate
of convergence with respect to the number of degrees of freedom, while the
h and p-versions have only a polynomial rate [2].

The singular behaviour of the solution of partial differential equations
of elliptic type is typically caused by piecewise smoothness of the input
data, by the cormers and edges of the domain, etc. Usually, in practice the
data are piecewise analytic functionms.

In Chapter 2 we introduce the spaces HE’E(Q) (k2 2=0) which are a
zeneralization of the weighted Soboley spaces used in [5]. The main tool

of the analysis in the present paper is the countable normed space

Bé d(Q) which consists of all functions u belonging to HE’Q(Q) for all k
14
and [yl < Cdk_l(k-ﬂ,)! ($=0,1,2). 1t can be shown [17] that the

k,%
Hg (93]
solutions of partial differential equations of elliptic type with piecewise

analytic data belong to this space.

Some imbedding inequalities relatedto the spaces HE“Z(Q) are derived in
Chapter 3.

The accuracy of the finite element method reduces to an approximation problem
when the coercivity or the "inf-sup" condition is satisfied [2] [11]. We will
study the approximation (in the space Hl) of functions u € Bg’d(Q) by
the h-p version and will show that exponential rate of convergence with

respect to the number of degrees of freedom can be achieved.

In Chapter 4 we analyze approximation. properties of the polyromials on a

single square and a parallelogram.
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In Chapter 5 a geometric mesh on a square and a parallegram is introduced
and the exponential rate of the convergence of the h-p version is proven.

Chapter 6 generalizes the results of chapter 5 by introducingv general
geometric meshes composed of c¢urvilinear quadrilaferalsand triangles.

The last chapter addresses the numerical results and the performance of
the h-p versions by the computational analyzis of an elasticity problem by

the code PROBE.
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- 2. NOTATION AND PRELIMINARIES

1

We shall denote integers by i, j, k, 2, m and n, and by IR and
IR2 we shall denote the one and two dimensional Euclidean space with
X = (xl,xz) or x = (x,y). If Q 4is any one or two dimensional set, Q

denotes its closure. By  we denote a polygonal domain in IR2 with the

boundary 9Q = T, the vertices Ai’ l<i<M and Pi, 1 <1i<M the open

'-‘77,

o

[ ot 4

edge of 3 linking Ai+ and Ai’(AO = AM). We have 3 = ri,where . is

1

3

1
i

the closure of Pi The measure of the interior angle of { at Ai is

1
<

T

LA

denoted by W, -

By H@(Q) (resp. Hm(IRZ)) (m>0) we denote the Sobolev space of

Fhil?

w

functions on Q (resp. IRZ) with square integrable derivatives of order

<m (m>0) furnished with the norm

2
lof?. =Ty,
H () o<la|<m L)

where ¢ = (a],az),ai >0, i =1,2, integers, [o] =a, +a and

1 2’
0, __§|a|u

a = a, o
3x118x22 X 1 X 2

As usual HO(Q) = LZ(Q). Further we will use the notation

( 2
- 10"
1" (Q) | a%*m B Q)

and

I0%|? = } 0% 2.
| =m

. By ri(x) we shall denote the Euclidean distance between x and the

vertex A, of . Let B = (61,82,---,8“) be an M-tuple of real numbers,

i
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0 < Bi < 1l,1=1i= M. For any integer k we shall write

Mg,
B+t k= (sltk,szik,...,BM;k). We denote @B(x) = ]]; ril(x) and
M Btk =
@Btk(X) = J];ri (x).

By Hg'z(n), m> £ >0 (HE’OGQ) = HEGQ)) we denote the completion of

the set of all infinitely differentiable functions under the norm

2 2 morx 2 2
I u = ", + D u(x)|” @ (x)dx (2= 1)
HZ’Z(Q) Hé L éz Jn BHk~L
and
2 2 a k 2 .2
] =l - j Io%u (2 02, (dx (@ = 0).
H;’O(Q) Hg(ﬂ) kZO Btk

For m= 4% =0, Hg’o(ﬂ) = L;(Q). Analogously as before

m

|u‘2m 2 = ] Jleu(x)|2 o
HS’ @) =

2

B+k_2(x)dx.

m,
B

studied. Let us mention the following lemma proven in [5] which will be needed

2
The space H () was introduced in [ 3 ] where its various properties were

later.

Lemma 2.1. HE’Z(Q) < Co(ﬁ) with continuous imbeddings 1i.e.,

sup|u| = Cfull 2,2

-
&: X€0 Hg " (®)

i where C depends on 2 but is independent of u, 0
E Let

F‘

r

£ [} m,%

n (2.1) WB(Q) = {u(x) |u € HB €@, Ym=2, 0=<2g =2}

i .

h .
'
[
-

and

-'c'_l

7 TR

N

e lala e




Cafr LS S e it

Lo % (10 12 42 1/2 o oy (k=2)
(2.2) B @ = {u(x) |u € ¥ @), (JQID ul® 0 400 s cd (k-2) !

for |u| =k=2,241,..., 02 <2, d

\Y

1, constants

C and d independent of k}

be the countably normed spaces (see [15]). For 2 = 0 we shall write
BB(Q) instead of Bg(ﬂ). The functions in BZ(Q) are characterized by

N different constants C and d. If we would like to emphasize the depeudence
on the constant d we will write B0 @) =B, .(Q), etc.

8,d B,d

The weighted Sobolev spaces HZ’Q(Q) of a non-integral s are defined as

the interpolation spaces. Let B denote the category of all HE’Q(Q),

k =2,24+1,... . B 1is a sub-category of N, which denotes the category of
. all Banach spaces, HE’R(Q) (k=2=20) is a normed space, and H§+l’£(9) <

HE’E(Q). Hence A = (Hg’z(ﬂ), H§+l’£(9)) is compatible couple in B. By

the application of the K-method, we define the interpolation space (see {(10]}:

k+1,2

k+0,%
H 9
B8

k,2
(HB Q), H 3

@)y (), 0<8<1.

It is easy to verify that if u € B; d(Q), then for any k = %

gl+o-2 /

(2.3) <c (k+0) L2 T (k+1-249).

ull
H§+e,z(9)
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; 3. SOME IMBEDDING INEQUALITIES

We shall generalize some imbedding inequalities provenin [2] [3] .

LR}

T be a rectangle (resp. triangle) with vertices (Xi’yi)’ 1l <i=<4 (resp.

PR NN A

1 <1iz=3); (xl,yl) is supposed to be the origin. Let h and h be

the length of the longest and shortest side of T, wy be the measure

" of the angles of T, 1 =i =<4 (resp. 3). We assume that there are constants K

and wg > 0 such that for all rectangles (resp. triangles) under consideration

- h/_l’lfl\’<00

P A

and

M
Let Y be the boundary or some sides of T, HkCY) = irerCYi), k = 0,1

i=1
. and M =4 (resp. M = 3) where Yi's. are the sides of T, and Hk(Yi) is the

Sobolev space on Y .
i
" 2 , , 1
g Lemma 3.1. Let u € H (T), and u vanishes at vertices of T, then u € H (y)

and

2
(3.1) ”u”21 < Chlu["2 .
H(Y) H(T)

Proof. Let S be the standard square (0,1) x (0,1). We obtain by the

>

standard imb2dding theorem (with C > 0 independent of wu):

...._.\,.f.,-,.'_._,.).'\{\.,\_.1. O S T T R S T ot e i S I e s N R e
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_\"

2 12 2
wi?, = clul®, = edul® o+ ll?, ),
L7(Y) H™(8) ut (8). L™ (S)
2
lul, = cdul?, o+ ul? .
H(Y) H (S) H (S)
Since u vanishes at vertices of S, there is some Cl > 0 independent
of u (see [1],[2].[11])such that
flufl = C fu

L2 1 HZ(S)

and
Tu] < Clul .

als)” 1 wAs)

Hence
2
R N P

ut &) H(S)
The usual scaling argument yields (3.1). The proof for the triangle is
the same. 0

2,2 , g .
Lemma 3.2. Let H8 (T) with @8 =r, 0<Hf <1 and u vanishes at
the vertices of T. If Y 1is a side of T separated from origin then
1-28, ,2
! .

Proof: Let S be the standard square (0,1) x (0,1) and 8§, = (0,1) x (1/2,1).
Suppose v 1is the top edge of S. We have by applving Lemma 3.1 (see also

IO

Y
'1\"(4_':'\\.‘
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9
> Lemma 2.1):
flull 1 =C Iul 2
H™(Y) H (Sl).
=C Iul
2 2
(s).
The scaling argument yields (3.2). 0
. Lemma 3.3. Let g be the sides of T, 1 <1i =<4 (resp. 1< i =< 3, for
g the right angle triangle). Assume that Y; lies on z—-axis and that v(x)
A
F is a polynomial degree p on Yq and that v vanishes at the endpoints
: of Yq- Then there exists a polynomial V(x,y) of degree p in x and
Q degree 1 in y such that V=0 on Yo (1i#1) and V=v on LE and
2
(3.3) w2, = calvi’y
H(T) H™(Y)
with C independent of h, v and T.
Proof. Let T = [0,1] x [0,1] and Y, = {(x,0) | <x <1} set
V(x,y) = v(x)(1-y).
Obviously V(x,1) = V(0,v) = V(1,y) = 0 and V(x,0) = v(x). V(x,y) is
a polynomial of degree p in x and degree 1 in vy, and
2 2 2
i~y = ¢, + T, ).
H(S) L7 (v,) H (Y,)
1 1
|
A AR SRy
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10
).
Since v(0) = v(1) = 0, we have
. 2 2
: iR, =clvlE
L (Y,) H(y,)
Using the scaling argument we obtain (3.3) for the rectangle. O

The proof for triangle T can be found in [5], [7].

2,2
B

8

Lemma 3.4. The space H (M, @B =r, 0< B< 1 is compactly imbedded

in the space Hl(T).

Proof. 1Let u € HE’Z(T) and assume first that u(0) = 0. Let (rf) be
B

the polar coordinates and v = r u. Then

Va2=r6u a29 OSQZSZ,
0 8
B-1
v =Tr u + Br u N 0<a, =1,
a, a, a, 2
rg rg 8
v = rBu + ZBrB-lu + B(B-l)re-zu-
r2 r2 r

Since u(0) = 0 we have by Lemma 8 of [3 ] (or Lemma 4.3 of [5])

B-1 .
: Hr ur” 0 = C”u”HZ’2
X HO(T) g (D
e N s T N N T
H (T) H(T) HB’ (T)

T T O T D .0 o TR TG 0L, L L 0 0 G S S vt
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where we denoted

1/2

(8 |2)

plu=( § |p%
lo]= 1

This implies that v ¢ HZ(T). Suppose now that {u.}oo is a bounded
j=1

sequence in Hé’z(I) and u,(0) = 0. Then 'vj =ru =1, 2,.... is

2 3 2 S j
uniformly bounded in H (T). Because the space H (T) 1is compactly
imbedded in the Sobolev space wl’q(I) for any 1 < q < ®, ther exists

oo ~
subsequence denoted again by {v } -1 Which converges to V € wl,q(T) in

Wl’q(r) andv(0) = 0. Let u = ‘B v. Then
a = r_BG - Br-B-]‘; x
X T
u = r-8~ - Br_B-l~ %
and since v(0) we have
fIr B_l;" 0 < cle™? l~”
H (T) H (T)

Hence

L IR Pl
H (T) H (T)

by KOolder inequality

L 1
< ¢r-Beyf ® o)y ¢
=1 o . ! I 0 (1)
‘ 1
= ¢l T

2 w2

e -.. -t ._-.‘ » "-5- AT AS N AT R P o \
N AW Pl TaN "f&'fa.‘}.\f&':\..x \.‘.&AA.{!- NN
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where %-+~% =1,p>1 and Pp <1 and hence u € Hl(T),

Similarily we havye

”u ’E" = C”V "{;!i , > 0 as J <> o
I e 32 g

and hence {uj} is a convergent sequence in Hl(T).
If uj(O) # 0 then we define ;j = uj—‘uj(O). Then using Lemma 2.1

we have

gl 5.5 = clo

It and |u,(0)| = Cllu,|
T) b Hé’z(T) b J

Hg'z(r)'

Using the first part of the proof there is a subsequence, once more denoted

by uj such that uj(O) + A and ;j + U in Hl(T) This completes the proof.
&

Lemma 3.5. Let T be a triangle with vertices (xi,yi) l<1i<3 and X = y1 = 0.

2’2<T) with @ = foo<p<1, @A) = H3(T) for B =0),

and v 1is the linear function interpolating u at vertices (xi,yi),

If ue€eH

1 =1i=3, then

(3.4) lu-vll | = cn! Pyl 2.2
H™(T) Hy > (T)
and
(3.5) lu-vll = clul
H; 2 (m) 1% (1)

with C independent of u and T.

Proof. If £ = 0 then the lemma is standard [2], [11]. Let S be a s:and#xd.
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triangle {(x,y) | 0 < vy < 1-x, 0< x < 1}  with yvertices (xi!yi),

2,2 B

l<i<3, and let U € H.’"(S) with QB =r and V be the linear

g

interpolation of U ( which exists because of Iemma 2.1). We first prove

that for a constant C independent of U

2 - 2 3 2
(3.6) o™y, =cqui’y , + IRLICIN AR
H (s) H (s) i=1
8 B
X : . ) 2,2 ' N 4
Suppose that (3.6) is false, then there exists Uj € HB S), =1, 2..,.
such that
(3.7) ju, )2 -1
J 1222 (s)
B
and
2 3 2
(3.8) |Uj| + ) IUJ.(xi,yi)| -0 as j + =,
HZ’Z(S) i=1
8
. 1 . , 2,2
Since H(S) 1is compactly imbedded in H (S), by {Lemma 3.4), thern

8

1
exists a subsequence denoted again by {Uj} which is convergent in H (S).

y2
(3.8) shows that {Uj} ig Cauchy sequence in Hé (S). By the argument similar

to that in the previous lemma, we can show that there is a subsequence once

that {rBU.}? is a Cauchy sequence in HZ(S),

more denoted by Uj jlj=1

rBUj -V in HZ(S), and Uj +>U = rB V ¢ HE’Z(S) as j = », Since
lu | + 0, D = 0 for la| = 2. Therefore U 1is a linear functi-n
3'42,2
Hg (8)

of S. Because Hé’z(s) < Co(g) by Lemma 2.1 and U (xi,yi) -0 as j - ™.

3

1 =1i=3, U vanishes at vertices (xi,yi). Hence the linear function

U=z0 on S, which is a contradiction to (3.7).

1]

Applying (3.6) to (U - V) we have
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o= =cClv -V = C|U]
2 2(3) HZ’Z(S) HZ’Z(S)
B B
and
U= vi = {u - v CIUI
H(S) O 2(s)

By the standard scaling

Lemma 3.6. Let T be

X = vy = 0. 1If

2 (T)

u € Hé’z

and mapping argument, we get (3.6) and (3.7). ]

a rectangle with vertices 4 and

1A

(xi,yi), 1<1i

(T) with ¢ <B<1 (Hé’z(T)

BT

for B = 0) and v is the bilinear function interpolating u at vertices

(xi,yi), 1=<1<4, then

(3.9) ”ll-V” 1 1-6 'UI 2 2

H (T) 6’ (T)
and
(3.10) Tu=vll 5 = Clul 5,

Hy ' “(T) H," (1)

with C independent of

Proof. Let S = (0,1) X%
o 2t
Geupe3s) with o, =

L at (xi.yi), 1=1=<

that for some constant

e -’\~..\._ .‘.;'...:‘ '.._". T ‘-*‘.._'-.;‘.'_'-’:.’.\"-.,:.... ..-_..‘-{ ‘,-'\‘ NN J' ',

u and T.

(0,1) with vertices (xi,yi), 1 <424,

T V be the bilinear function interpclating
sven analogously as for (3.6)

4. .c can be |

C independent of U

|

-..‘gx x;.t&&sa\\\ .
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4
2
(3.11) o) 22 = c(ul? 22 + 1 JuxLyplD.
(s) 6)) i=1
Let W be a linear function interpolating U at 3 vertices of §
other than the originand ¢ he the bilinear function which is equal to 1
at the origin and vanishes at other vertices of S. Let Z =71 - W, then V

=W+ 2(0,0)¢ and

lu-vll < [lu-wll + |zco,0)| llol
2,2 2,2 i 2,2
HB (8) HB (s) Hg (s)
by the imbedding theorem
= cllu-wll (2.2
Hg (s)"
In the same way as in Lemma 3.5 we have
lu-wl] < clul
152 (s) 13 2(s)
which implies (3.9) and (3.10) by the standard scaling argument. C

A CANEAS O
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4. PROPERTIES OF THE POLYNOMIAL APPROXIMATION

In this section we shall analyze the approximation properties of the

polynomials on a square, rectangle and parallelogram.

Lemma 4.1

[= <]
= T
u(x) 1,§=0 ci,j.pi(xl)pj(xz)’ where pi(xl) (resp. pj(xz)) are Legendre
polynomials on I_ = (-1,1) (resp. I. = (-1,1)). Then

*1 *2

Let S = (~1,1) x (-1,1) be square domain and

2. %

2 2 ) (i+a1)!(j+a2)!
2)

€1, 73t "5+ - )TG3,

o
(4.1) f ‘Dau|2(1~xi) Laax2) Zac =
S

e |
i 1

j2a2

provided that the left or right hand side is finite.

Proof. Using the basic properties of Legendre polynomials we get for m = 1,2

2 (i+am)!
2i+1 " (10 )! for o =i,j 1i=7j
n
il (@) (o) a
m m 2. m -

J-l pj (xm)pi (xm) (1 xm) dx_

0 for a, > 1,j or 14 j
and the lemma  easily follows. 0

Lemma 4.2. If u € HF+3(S), k = max(kl,kz), k ,k2 > 2, then there exists a

1
polynomial ¢(x_ ,x,) = z d, xixj such that for 0 = m = 2
1772 , i,j71°2
0515&1
g <<
O_j..k2

.................

DI 3 IR s i ettt




Proof. Let pi(xl? and pj

Since u € HS(S) we have the following Fourier expansion:
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+1+2
%.2)  ID-»l%, = o il § l'*’s1 uy?
. |D (6 Bl - C °7 — 1 | ]
i)  eptsptEmamdt o ls 0 st w0y
ax ox
1 2
(kz—sz)! § 8sz+1+2,u )
+ I 1% 3
+s,+2-2m) !
(ky¥s,+2-2m)1 oL ax%stﬂ 10(s)
12
where siis any integer, 1 =< 8; < ki‘ (i =1,2), and C 1is independent of
ki’ Moreover
(4.3) u=¢ at the vertices of 8.

(xz) be the same as in the previous lemma.

I

baa T L0y gP(RPRy ()
()
usz (x;,-1) = izo a.p, (x,),
172
[¥<)
u (-1,x,) = ]
AN ) b.p.(x,),
X, X, j=0 "3%; %2
[ve)
uH(x,,-1) = .Z d,p;(x,)5
X i=0
1
0
u,(-lx) = ] e;p, (x)).
X, j=0
Set
i
¥
b- (
b i
.
Y
NN N AT AT AT I T T TR SN SRR CTRRNY e e e
- L] .A_:
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. Xl(xl,xz) = omi<t - Ci,jpi(xl)pj(xz),
=%
Ostkz-z
*1
X, (x) = a.p,(x), Y(x)=f W (E)E, +u _ (-1,-1),
2\ OSisél-z iP1'% 2'%1 et Y,
X
(x,) R (-1,-1)
X, (x,) = b.p.(x), X, (x = I3 u =1l4—1),
372 OSjEZZ-Z 52 3% J_l 3°27%2 7 Y x,
X
~ (1
X, (x) = 0<i<l}; L dp, (x), X (x) = J-l X, (E)dE, + uxl(-l.-n,
=
X
~ (2
Xs(xz) = 0<j<lz< . e P, (xz), Xs(xz) = J-l XS(EZ)dE2 + uxz(-l,-l)-
=375
Let
¢(X) = ¢1 + ¢2’
where
RS RS Y B i 1. ]
“d 4= f_l f_l | EEp e, ¢ Gy f_l X, (E)de,

X

r1,,
+ J_l X, (8,798

X X
2 ~o 2 ~o
- s+ ( : 1,-1) + Q2 -1,-1).
(4.5) ¢2 1 Xl)f X3(€2)d€2+J XS(Qz)dSZ"'u( i,-1) +(L+xl) (1'*‘x2)uX X( 1,-1)
-1 -1 172
The degrees of ¢i (i=1,2) in X, and X, are at most kl and kz

respectively. We can readily verify that

E G I AR Al " A e il e e i s Pn N g it A et .v'-

..............

........
e ™ S
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rxl *2 rgl {62 % yardt ) rx2 )
u(x, ,X,) = u € ,€,)dg dg dg dE, + (1+x u (-1,5.)dg
1°%2 Jﬂl J_l }-1 J_l Xixf 17527 %51%52%1% 1 J_l x, %, 02002
Xl fxl xz
+ (I+x )[ u u_ (§,.-1)dE+; u_ (£_,-1)dg +J u (-1,£.)dg_ +u(-1,-1)
2]y % x50 1) ;% 71 L 2772
- (l+xl)(1+x2)uX x (-1,-1).
172
Let
u = ul+u2
with

r l 2 l ~ ~ ~ o~
. = + . .p.(E)Dp,( dE dE_dg.d
(4.8 vy J-l f_l f-l f-l(OSiSE,-Z izki—l)(cl,Jpl & pj 52)) £198,98,%8,

0=jsk,-2 3§20

1 (1

+
~
[
b
[ ]
~
e

uxl(gl’—l)dgl’

-1 *1%2 1

1/-17-1/-1 0:15%1-2 1,3 %
Jzkz-L
(xz *2
+ (1+x1)J-1 uxlxz(-l,iz)diz +I-1 uxz(-l,Ez)dEZ + u(-1,-1)

- (I4+x_ Y (1+x_)u (-1,-1);
1 2 xlxz

we get

R T B




20

X1 %2 51 5
fp = f J J R NG VP E,)dg dE,dE . d
-1/-1J-17- izkl -1 1,3
20
*1 %2 rgl &) N o
F, = ) d&F dF 4
. f_l [-1 I f_l "y SENCRTNGRL RN
2k,-1
X 5
F2 = (1+x2) J-l f-l izkz—l aipi(gl)dgl,
1
F (1+x.) &5 & bp FHdF d
5 = | f_l jzkz—l RRCRER 3
x5 & N
F. = Yo\
3 J-l f—l izki—l 45P; (8))46,98,
*2 (52
Fo = f Y e.p,(E)dE dE,.
¢ 2l j2k,-1 3 2° vz 2

It can be seen that

azF1 2 (2 ~ L
= c, .p,(x)p,(£)dE d
Bxi J-l J_l izgl_l l,in 1 pJ 52048798,
0=i<oo
\-
= v p. ( ) 1 ( (X ) P (X ) Bj (le Pj_z(xz)
olon (3P @D 2j+3 23-1
-1
0<j<w
and

.‘ . ’_'{
L‘n_.&_._x_‘L.A_.l_A___L_AA_A‘ ol d

-

*2'a’

| 3
- l

)

.I"‘-" lllllll
T RN T AN




l‘-".‘ SR S I A ST e e m e e e T T T e Te T T Ty T T N S i Gl S Malb Al M 0 M A6 S Sk ah Gal g ANl Snd Ay o

21
. 2
3°F
1,2 ) 2
I—17 = ¢ 1 3 P
o u?s) iz -1 S (2341 (541"
j=0
-3 ] . -
(k1 sl). (1+sl 1)t

I ey, Z‘il 2‘11 (i-(s,-1))!
izsl—l -3 + J 1 ’

=C (e +s -2)]

j=0
by Lemma 4.1
(k.-5.)! s_+3
=€ ety P
s -2)1 ¥ .
(kl ) ) ; s, 2 10(s)
3 sz

In the same way we have with C independent of k

+
m_ 2 (k;-s))! asl ’ 2
(4.8) |pF | SC ooy | I , 0<m=2
1 HO(S) (k1 sl+2 2m) ! s1+1 2 HO(S)
) X,
and
+3
(k.-s_)! )
2 2 2 9 u 2
(4.9 IID"F, | = Cam | I , 0<m<?2
4 HO(S) (k2 sz+_ 2m)! 9 sz+l HO(S)
9Xx, 93X
1772
Next we estimate Fz. Since
82F2 Z
—= = ( a,p.(x,))(1+x,)
ax -1 Tit 2
1 -1
22F (k.-s.)! . (i+s. -1)!
— — . . — 731 * : Y -z =2})1!
3% g0 (L) o -1 1 2i# (k¥ =201 o ) "1 2i+1 (i-(s.-2))!
1 1 1 1
(k.-s.)! sl+2
<C 1 1 ;la u i
: - (kl+sl—2)! IS L )
9x ax tx
1 2 1
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g
}a
N . we obtain
P T, , k,-s)1  51T2
o =" Sc(k}»s lz)v s
: %] H (5) 17517 axsl . B (8)
: 1 2
In a similar way we have
+2
oF (k,-s,)! 51
. 2
Belo = ¢ wrnT Fs1Y -
1 H(S) 11 5 1 H £S)
Xy BXZ
+2
(k,~s.)! 51T
A Prwsyrll e
H (S) 11 ’axlaxH(S)
1 2
2°F, JF,
It is obvious that 7= =0 and Hg;-ll 0 = CIF, | 4 Therefore for
ax2 2 H (S) H (S)
for 0 =m<=2
; +2
(k -s_)! 5;F
2 11 5 u 2
(4.10) ID"F, | sc I ]
0 k_+s_+2-2m)! + '
2 4%(s) (ke +s,+2-2m) ox °1 lax 1°(s)
1 2
Analogously we have for 0= m=< 2
+2
(k,-s)! )
(4.11) "R %y =ty 11
H(8) 172°¢ © axgx. 2 H(S)
1°72
1, l
(k. -s_)! sl+
2 171 5 u, 2
(4.12) ID"F, | < ¢ 2 i
' 0 Fs_+2-2m) ! ! ’
3 12(s) (kl sl+2 m) a‘{sl+l HO(S)
*1
+1
(k,=s,)! S9”
m 2 2 79 3 u, 2
(4.13) IDF, | =C . .
+s_-2-2m) ! '
6 HO(S) (kl s2 2-2m) a‘{szﬂ HO(S)
R A g L S NN T e e e POIRIAORS
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Hence ysing (4.8), (4.10) and (4.12) we get

(4.14)
(kl_sl), 2 s1+1+1
10" e )%, sc u—u 0Osms?2
1717305y 7 7 (kpFs +2-2m)! Z 2 8%
ox 3
2
and by (4.9), (4.11) and (4.13)
(4.15)
o™ (u,=d )H - - !P““““ﬁl 0<ms< 2.
2 HO(S) (K2+Sz+2 2m) ! co o s +1+z o( 9)
1

(4.14) and (4.15) yieid (4.2). From the orthogonality of Legendre polynomials
13 = = = = = =
-l(il,xz) Fa(xl,il) FZ(:l,xz) Fs(xl,il) F3(:1) F6(i1)

which implies (4.3). O

By the scaling argument we obtain immediately the following lemma

Lemma 4.3. Let Q = (a,b) x (¢,d) with h, = (b-=a) and h, = (d-c).

1 2
If u € Hk+3(Q), k = max(k K ) kl k2 > 2, then there is a polynomial
- ij _ . s < < .
¢ (x) 0<§5k ci,jxlXZ such that for any integer 1= s; = ki’ i 1,2, and
-1
Osjsk2
0O<m=<2
(4.16) ,
R TR W e b
_=2m 1 17" 1 < 2,22
HD (u-¢)" 0 s Ch " {7 ) Yol H e )
- +2-2m) ! 2 +1
H (@) (ky¥s,¥2-Im) 220, %1 1@ 2
X ax
1 2
+
(k -s ), h2 2(s2 1) f as +1+4 hl ”
+ —=) H--'—-"—H =)™}
(k +s +2_om)v\ & s +1 2
2 =0 3xiax H Q)

------------------------

Mt et Vet : S R I S ST I TR PR I e et et T e e e e
'0 t'n"n ) .-.\.-‘..\-'.\ e . ._" .a'. f,'- .'..' e -J.-.' ey n".-.'.-. n ety CYASTRCIATIA SR



where h = min(hl,hz) and C 1is independent of k. Moreover
4.17) u=¢ at the vertices of Q. O

Theorem 4.1. Let Ql = (a,b) x {c¢,d) cc Q@ with h1.=(bya) = Alro and

h2 = (d-c) = AZrO’ Ai >0, (i=1,2) and Ty be the distance between

origin and Ql. Assume that h/h = max(hl,hz)/min(hl,hz) s k. If

u Hg+3’2(9) with ®B= rB, 0 <8< 1, then there exists a polynomial

¢

N

ij .
o<k ci’jxlx2 on Ql with 2 =< kl, k2 = k such that for 0 <m < 2
-1

0sj=k,

2 I'(k,-s +1) ). 2s,
2 2(2-m-B) i i p b

(4.18) D" (u-9) | < Cr —5= ¢ lhull
Ho(Ql) 0 =1 F(kj+sj+3 2m) * 2 s,+3,2

3
HB Q)

s.+3,2
where s  1is any real number 1 = Sj = kj, j=1,2, and HBJ ) is
J ~ ~
k. +2,2 k.,+3,2

the interpolation space (HBJ «, HSj (Q))6 « L[Or some integer

K_ = sj +1 - 6j < kj’ 0= ej =1 and C 1is independent of k, but
J

dependent on Aj and sj, j = 1,2. Moreover

(4.19) u=¢ at the vertices of Ql.

~

Proof. Applying Lemma 4.3, by (4.14) and (4.15) we have for the integer kj’

1<%, <k,, j=1,2
5 g0 ,




Ve a v 2N

(kl-kl)!

m 2 -2m
10" =% = cw

+K_+2-2m) !

H(Q) (k,+e,

2 )

+K_+2-2m)!
(k1 1 m)

and similarly

~ 2k
(k.~k )! A 2
2 2(2-m- 2
OIS IO Cro(z n8) i +§ o 7 Ml % 43,2
H () (kz-zc2 =2m)! 4 2 Q)
B8
Let
Tu = Dm(u -d.) j=1,2
h jriv e
k 43,2
Thus Tj is an operator: HSJ Q@ - Hm(Ql) and the norm of the operator
is bounded
~ 2K
- ! ]
o BT A R LA N
ﬂTj” K +3.2 = Cr - o) .
- E ] - '
HSJ (Q),Hm(ﬂl) (kj+kj+2 2m) !
- s.4+3,2
If Sj = kj -1+ Gj, 0 < ej <1, HBJ () 1is defined as interpolation
space [10]
5,+3,2 kj+2,2 k3,3
H Q = H Q), H 2 .
8 () ( 3 Q) 3 ( ))ej’w
s,+3,2
Tj is also linear and continuous operator: HBJ Q) - Hm(Ql) and
i 2 |2(l-e) . '26
”Tj” Sj+3’2 n = ”lel kj+2’2 m ”T.” kj+3’2 m
HB Q) ,H (Ql) HB (Q),H (Ql) HB (Q),H (Ql)
2s ~ ~ 1-6
A j k,-k )! k,-k, +1
< cp2(2m-®) 1y Gyt By .
- 0 2 ~ ~
k,+k, +2-2m)! (k.+k ,+2-2
(kythy¥2=amt (egrky+2-2m)
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For any integer n =0 and 0 < 6 <1, there are constants Cl’ C2 >0
independent of n such that [18, p.937]
(4.20) ¢, T(n+140) = nt(n+1)? = ¢, T(a+1+0) .
Hence we have for j = 1,2
2s ,
. ] .=S, +
i) - Cr2(2-m-s)(b_) 3 Tkgms;+1)
1530 s +3,2 m =70 2 T (k,+s,+3-2)
HO (@,H (@) i
]
and
2s,
w0 l?, = eGP R e A NI
-0 I‘(k +=. +3 2m) ' 2 Mg +3,2
H (9 ) j=1 g J Q
Q)
8
(4.19) follows now from (4.17). 0

Let  be a parallelogram with interior angle w, 0 < w < g' and two

sides a and b (see Fig. 4.1). We introduce the mapping

“Y AY
bsinwp b
w
> -~
0 q X 0 a
Fig. 4.1

Parallelogram




-----
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1 xl-xz cot W

%2
[}

xz/sin w

and have analogous lemma and theorem for a parallelogram domain.

Lemma 4.4. Let  be a parallelogram shown in Fig. 4.1. If
u € HkT3(Q), k = max(kl,kz), kl,k2522, then there exists a polynomial
i3
o(x,,x,) = z c X;X5 such that for 0 <m =< 2
1°%2 osisk, i,3%1%2
OSJE&Z
(4.21) D" (u-0)]|%,
H (Q)
- 1
<C(nin(a,b)) (k(z i;iém)'(; HoptD 2 & T
171 ) 2=0 £'=0 1 S 2 2 (0))
X1 "2
(k, -s_)! 2(s +1) 2 Syt
* s o )T P 2 fiu s a2 &
2 DpreTems 2=0 2'=0  _442' 2
I H ()

where xl-(xl—x2 cos W), X, =X,, g is integer =k

2 2

independent of k. Moreover

i i=1,2 and C 1is

(4.22) u=¢ at the vertices of Q. g

Theorem 4.2. Let Ql be parallelogram << with interior angle w,
0 <wc< %, and let a and b denote the lengths of its two sides,

a=<)r, and b = A,r, where r, is the distance between §, and the
170 2°0 0 1

origin where the vertex of Q 1is located. If u € HE+3’2(Q) with
B xh3
¢, =r, 0 =8 <1 then there exists a polynomial ¢ = Z c, X, X5
B osize, 1172
2 = kl,k2 < k such that 0=jzk,




O i “Bte )

28
2 T(k,-s +1) A, 2s
2 2(2-n-B) i3 I R
4.23) D" (u-0)1l < cr (el
Ly O sy Tl ¥s #32m) 27 HBj+3,2(m

where sj is any real number 1 = sj < kj (j =1,2), C 1is some constant

s, +3,2
independent of k but dependent of angle |, Hgl (2) 1is the interpolation
K 42,2 K.+3,2

~s

h| ] <8 < .
space (HB ), HB (Q))G,w’ 0 <6 =1, for integer kj < kj such

that sj = ﬁj - 1+ 6. Moreover

(4.24) u =¢ at the vertices of Ql. 0
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5. APPROXIMATION PROPERTIES OF PIECEWISE POLYNOMICAL ON A SQUARE
AND A PARALLELOGRAM

Let Q be a square or a parallelegram and u € Bé,d(ﬂ) with the singularites
in the vertices of the domain. We shall show that h-p version leads to
an exponential rate of convergence if the mesh and the distribution of
the degree are properly chosen.
Let us investigate the approximation of the function u € Bé’d(g)
where § = (0,1) x (0,1) and ¢B = rB. Let a mesh on ! be as follows:

let Xy = Yo = 0, and xj = yj = On+1_j, l1=j=n+1 for 0<0o <1 and

Ql.j = (xj-l’xj) x (yj_l,yj) for 12 j<ua+1,
QZ,j = (xj-l’xj) x (0’yj~1) for 2= j=n+1,
Q3,j = (O,Xj_l) x (yj—l’yj) for 2= j3=<n+1,

The nodal points which are marked * in the Fig. 5.1 are classified as irregular
nodal points and the others as regular nodal points. The rectangulation
{Qi I i=1 for j=1,1=1=3 for 1«j=<n+1)is denoted by Q*g.

9

If we diyide Qi 5 for 122, j > 2 1into three triangles Q: i

1 <k=<3 as shown in Fig. 5.1 we get a mesh on &: {Qi . for i =1,

"]
k

1 1,4 for 1L <k=<3,2<1i=3,2<j<n+l1}.

iA

jsn+1,2<1i<3, §=2,0Q

We denote this mesh by Q; and call it a geometric mesh.




Figure 5.1

Geometric Mesh on a Square

Let 32’9’1(92) c Hl(g) be subspace of functions which restricted to

1,30 1=k=3,2=21<3,2<j=s n+1l (resp. Qi 5 i=1,1<j=n+1, or

l1=.i=< 3, j = 2) are polynomials of degree = p? j (resp. Py j) in x and

of degree = qij (resp. ay j) in y. By P and Q we denote the degree
b

|3 3 k
vectors P = (pi,j) = (pl’l,pl,z,Pz’Z’...9P3’n+1) and Q = (qi’j)

(q q q3 )
1,1°91,2°%, 2> *%3,n+17 "

2
Lemma 5.1. Assume that © = (0,1) % (1,0), u € BB d(Q) and @8 = rB. Then
P,Q,1 . n _ k
there exists ¢(x,y) € S—-Q' (Qq), 0<0O0<l, pl,l = ql,l =1, pi,j =2,

k = < = = j = 2 d are non-decreasing with j
93,5 = 94,5 7 2, 12k=3, 322, an P50 94,3 g ]

such that
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31
- 2 2(1-8)y 42
(5.1) lu=s?1 . = c{nZ @ Py,
H () 1,1 HZ(Q )
: 1,1
X 2s, .
- 1
? 20-g) (P, 570,90 (M) P o
' * ) *j-1 py +8, DT\ 2 hal s5, 54352 *
1<i=<3,2<j=<n+1 J 1,571,370 Hy @ 3
2t
—t- . ! . Y i’
xz(l-B) (qi,j 1aJ) \)19] j”unz ) }
j-1 (q, .+t .=2)t\ 2 t, .+3,2
i, 1,3 H 1,] Q. .)
g i,3
where ¢,1’1 = MQ is bilinear interpolation of u at vertices of Ql.l’
. s, . and t, . are real numbers, 1 <s, , <p, ., 1 =<¢t, .<q, .y Ay, . =
. 1,j 1,3 i,j i,] 1,3 1,37 1,3
= - v/_ ) = = - = = 1 ‘
: Vl,j (1- 9)/¢¥20), Az,j \)B,j (1-9) /o, \)2,j >\3,j 1 for 2=<4i<n+1, and ]
" . —-s, ! =T - + 1), etc.
i, 785,30t T TRy g m sy 5+ 1)y ete
: Proof. Applying Theorem 4.1 on each Qi 5 l1=i=<3,2=<j=<n+1, there
4 exists a polynomial ¢, . with degree p, . in x and q, , in y such that
1,] 1,1 1,]
- for 0sm <2
LY
‘
LY
% m 2
(5.2) D" (u=p, I
LI W0,
. 1,1
2s
- 1 ot
, < ¢ x2(2-m8) Py,37%5,900 [ 2iyg i’J”u];z
. - j-1 (p, +s, +2=-2m)!\| 2 s, +3,2
? i,j 1,3 H i,] « )
g i,
2t
- 1
. + (qi:j tisj). \)i:j) i.j”UHZ }
. (q, .+t, .+2-2m)! | 2 t, +3,2 :
1, 1] g Q; )
g 1,3
R T A T S R S R R T
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On the regular nodal point of Q*g the polynomial ¢i j(x,y) coincides

k
with u(x,y). We need to adjust by 3 on Qi 3 for the coincidence
on the irregular nodal point.
We show the treatment on Q, 3 (j >2). We denote %y j(x.y) on
’ ’

2, . by ¢§ j(x,y), 1 <k=23, and let vk . be linear function on

3 2,3

k
2
Qk . such that
2,j

k ' k
Vz,j(xj-l’yj-z) - U(Xj‘l,yj‘z) - ¢2,j(xj-2’yj_2),

vk . = 0 on the other two vertices of Qk - i
2’3 Z’J i
Then setting
k k k (x._jhy._) (x )
s = + .y =17 T /.
%2,5 T 92,5 ¥ V2,3 i i*7i=t
k
on QZ,j’ 1<k =<3
‘? we have
3
u = $k on all vertices of Qk
2,j 2,3’ (xj-lro) (X],O)

1 =k = 3. Figure 5.2

Partition of a Nondiagonal Element

R SRR el AR SR St B VST

Applving Lemma 3.5 we have for 1 22, j > 2

AR

JJUEETeTaTE T2 0 WEKE .
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- Kk 2 kK k2 )
(5.3) Hu—iﬁi Jl 9 kS !Zu-¢i VS j” 2’ = ¢ u-p jl 2
TECQy ) S Beter ) i SCROR
k2 2 k2
(5.4) u=d, .l < Ch{ fu-d. ]
L3 el @k L3 L3l gk
i,j i,j

Functions ¢i ., (L1 =1, or j « 2) and 5? j (i22, j >2) should be
’ ’
further adjusted for the continuity on the common edge of two triangles or

rectangles.

There are six basic cases for i = 2 shown in Fig. 5.3, and another

similar six cases for i = 3, which we have to treat.

2
Qi
Q3 $,j-1
2,]
Case 1 (j>2) Case 2 (j>2) Case 3 (j>2)
0 05
3 2} Q1 | Q2,2
E 2,
{j Case 4 (j>2) Case 5 (j>2) Case 6
g

Figure 5.3

Scheme of Adjacent Elements

We show the treatment of Case 2, Case 3 and Case 6. The other cases

are similar. 1In Case 3 6% j and 53 3 coincide with u at endpoints
’ -

- 1 3
- of common side y of Qé j and Qg T Let w = (3, ' 52 j).
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1 .3
2,5~ V2,3

Hence the piecewise polynomial is already continuous on Q; 3 yf

is a linear function, w vanishes on Y.

3
2,]

Since 6; 5 6; j°V

(3 > 2). 1In Case 2, the functions ¢l ; and ¢ coincide with u at
bl

2
-1 2,3

2
t . - .
he vertices of Ql,j-l and QZ,j’ w (¢l,j—l-¢2,j)k vanishes at the

endpoints of common side Yy of § and Qg j° By assumption w is a
’

1,j-1

polynomial of degree qu j in y. By Lemma 3.3 there exists a polynomial

w of degree q, i in y and degree 1 in x such that for 0=y = yj-l’

w(xj_z,Y) = w(y), it vanishes on other sides of Qi D and

~ 2
(5.5) i < c¢h, vl
1,.2 2,3 1, .
H (QZ,j) H(y)
2 2 2
<on, (182 - ul? +le, . -l
2,5\"%2,3 i) 1,5-1 it )
by Lemma 3.1
2 2 2 2
c{hs . . - +h, . h, . ., o= ul }
= Clhg,5 g, “”Hz(gz y 2 72,31 I, 51 “‘HZ(Q )
2,3 "l,j-l
~ .2 2 T 2 ! _ 112
= Cfh, Héz,j ull 2o + hz,j_lL¢ 1.4-1 ude(Q }
29J 2yj-l)
Setting -
2 ) A 2
V2,5 = P2,y T v im0
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we have
2 2 ~2 12 ~ 2
(5.6 fluyzuy N7, = A lu-3; J!l L oa Hlelt 5,
b ’
H@) ) H(2y O H (@ )
~2 2 2 3 x2 52 2 "2
< (=g, - +h5 -3 1 b .
z’j fzzyj l.j_'l
by (5.3) and (5.4)
2 2 2 2
= C{h - + .
{ 29] IU ¢2’J|H2(Qk ) hl,J‘llu )J 1‘H (Q )}
2,3 1,j-1°
and
(5.7) fu-, . 112 = lu=¢ I.
B Litlab . )
“1,j-1 *1,3-1
In Case 6 (j = 2) ¢l 1 1s the bilinear interpolation of u at
vertices of Q The common edge of and is separated from
1,1° 1,1 2,2
the origin and w = (9, -9¢ )k vanishes at endpoint of Y. By Lemma 3.3
2,2 1,1
there exists polynomial of degree 2 in y and degree 1 in x such that
QIY = w and G vanishes on the other edge of Qz , and
I, < cn, Ml
<
H @, ) H ()

Y at gt et
RO YA

A I R A A R R Ok |
':'a"hﬂlihhl'
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o 2 2
19 = oy I
H (92 2) ’ H (V)
by Lemma 3.1 and Lemma 3.2
< ch, (b, -0, |2 + hl 28 1 )
- 2,2 2,2 2,2 HZ ) l,l ’ 1,1|H292(Q )
W) Hg B4y
< cm? o, N2 + n2 B g 2 ).
2,2"%2,20 2 0 5T L1 112,29
2,2 8 V4,1
Letting
- R Q
wz’z ¢2’2 W in %,
Y1t ¢1,1 Qg
we have
2 a2
(5.8) T < Jlu-9, ,I%; + 91
] ’
BTG, ) B (G, 5) H(G, 5)
2 2 2(1-8) 2
S ¢2,2”H1 * By gl %’2”32(9 , T fhu ‘1’1,1”Hz,2(Q )}
SUWY 2,2 g G
and by Lemma 3.6
(5.9) o=ty I = BBy 1
"1,1 ¢ ) 1,1 1,112,200
9 g (41
........................................................ W w e e e e e e T e T e e (T Tt et T N T it e
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After treating all the cases we obtain modified U*k

1,3’ i>1, > 2 and
b

modified wi 2 (i = 1,2), Define

o, on 0%, for 1=k=3,25s1=3, 35js=noH,
1,] i,j
‘p =
wi,j on Qi,j for i=1,1=<3j<n+2 and 1=i=3, j=2.
Hence y € Sg’g’laz?) and
2 -
(5.10) [lumyi] C{hz(l B uo n
@y 1,192,200
' He' © 1
2 2
+ z (”u'q) J” 1 + hi -”u"bi ” 2 )},
1=i<3,l<cj<n+l B3 ut@, L) »J JTut@, )
l,J 1,]
(3.5), (5.2) and (5.10) yield (5.1) 0

Theorem 5.1. Let § = (0,1) x (0,1) and Qn be the geometric mesh on

y shown in Fig. 5.1. If u ¢ BB d(Q) with 0 < B <1 and @8 B, then
2 for any 0 < g < 1 there exists a piecewise polynomial y (x,y) € Sg’g’l(ﬁg),
-,
%‘ with degree vectors P and Q in which P11 9,1 " 1, pz’j = pi,j = Py
k .
- qi,j = qi,j = pj for 1=k=3,151i=3,1<3j=<n+l, and pj = max(2,[iu]),

and y satisfying (5.15) such that

LASUAR
N A T )

_
.

(5.11) looll , = ce PN

H™(Q)

1/3

The constants C and b are independent of P, Q and the number N of

1

Eh

degrees of freedom of the space S—'Q 1(°

RIS . LA AR A

X EXA.. O

E
L.
s
L
73
b
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Proof. Applying Lemma 5.1 there is ¥ € Sg*g’l(ﬂg) satisfying

2s

(P. =S )' isj
2(1-B)] “Fi,i Ti,.i ,;L
Hu‘bﬂ =d . ) INIF
1 Q) I<j<n+l j-1 ((pi,j+si, '2)" 51,720 )
1<i<3 HB i,
2t
~t, ! i, 2(1-g) (n+1
+ (qillgtl,l)' (< Yi,4 ) thll +3,2 |+ B (),
(a5, 5%¢4,472)! Hsl'j (94
Letting p = max(l, %gg? we have using (2.3)
)is 25i j
le-yl?, =g 20-O(2Ld T Tt M od) (s, syt
i@ 1< 31 (Pi,j s;,472)! % 1,]
2t
(qi —t, e, i,j
21 i)j 1:1 Od 2(1'8)(n+1)
HRCH I N R X (&g, 4¥D1) o )
- = _— _— ,a, <1 with q,,0
Let sy 5 = %Py 5 = %Py By 3 T %Y 5 T Yy 0 € opoy S L WIER a0y

Then

2 2(1-p) Py
(5.12) flu=yj| = C{ (F(od,a.)| ~-p
1 (o) 1< Zn+l 3-1 ( 3 3
+| Flod,a)| j.qj + o2 (1mB) (ntl),
1-o ad, r2a
1- e .
where F(dl,a) = f;‘gfzga —Elj * Function F(dl,a) is defined on [0) X [0,11
) +a
and F(pd,gé) < 1.
Hence
(5.13) F, = min F(pd a) = Flpd,o ) = F(od,-%%) <1, apy, =2/ io®a?.
ae[0,1] 0
Taking pj = qj, aj = aj = max(;; amin) we have by (5.12)

*\ud



LY. ) F VN A

X .-'a.

(5.14) el
H (D)

- Y

’ < C( 02 (n+l1) (1-B) + z XZ (1-8) lF(Dd, -l'—)ipjpf.)
<3< j-1 P, j
i 1<3=], b

P.
- + Z x?'(l-s)!F . I J p6.}
N . . j- min J
. l+JO<JSn+l

1 : .
where p, =[; :}* 1, [a] means the integral part of a. We choose p, =
o mifa 1

max(2,[ju]) for j = 2 and

(5.15) u > 2(1-B)ing

1n Fmin

Since jo is bounded

et ST B 2 SRS AT SR

1 2
ig = + 5
0 wu %in
3 and i
(5.16) -yl =cg 2 A-)
s H (®)
9 p. l p
6 F(od,=— .
Pl 2 (Pd. ™ o IF [P
vt e max | [+ L pfmta s
2=i=], ? i ZSijO min j0+15j§n+1 1 4 h|
< gl -R

with C >0 independent of n. Let W oa max(1,4). The number of degrees

of freedom N is

h’-‘.-i-l(«'."_-"' T b TN T e N S e R s T AN e N T D T S AT R T
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n+l "

Ns3+3@’+7) @D =215 2(n+2+%)3.
j=3

Hence

3

~2(1-g)1nt 3 §t/3

2 S

lu] = Ce
H

1
g

1/3
which yields (5.11) with b = (1-8)0‘25) / In = and C independent of N.
m

Remark 1. In practice pj and qj are often selected uniformly, pj =
qj =p = [u(n+]_)] for some u > 0. Then (5711) holds and (5.15) is not
needed. From (5.16) we see that for py = p

2 2{(n+ - 6 2(1-P]
D Jupl?  2c? ™D B e Pt 7 G20
H™(Q) 1<j=snt+l
+ -
_2 i1
20 >H G R,
= c{o Fminl )}
1
3
= Ce.bN
-2 1
with b = éi;?l min(p 3 ln'%ﬁ13 1n F]- ) and C independent of N. 1In
min

(5.17) the first term is the error on the element containing singularity,

the second is the error on the rest of the elements.

~n

g
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Let us discuss now  the optimal choice of p. First we drop the
6 . P 6 . ..P
term p in (5.17) since |F . |*p =CF for some 0< F< F . < 1,
min min

and replace ,ﬁ7 and pl/3 by NO and v respectively. Consider the

2(1—B)Ndv-2

function g@®) = gl(v) + gz(v), gl(v) =g and gz(v) = vaO

with 0 < F, g<1l. It can be readily seen that gl(v) and gz(v) are

increasing, respectively decreasing functions on [0,»), and gl(v) = gz(v)
1/3
= = 2(1°§)1n g '
for v Vo 1o F with Vo independent of Ny- gl(v) and

gé(v) intersect each other at least once and three times at most, (see Fig.
5.4). Therefore there are Vyo i=1,2,3 (resp. i=1,2 and i =1)
such that

2(1-B)Nyv, 2
J2 . 401-8) n o
i Novi
F In F

(5.18)

since g'(vo) >0, g'(0) <G, and vy < Vo

Figure 5.4

Determination of the Optimal Value of v

Now we can speak of the optimal value y = vi (resp. vg) in the sense

of minimizing g(v) at v (resp. v3)' The optimal value of 3 depends

1
on o, F,  and N.

R R R R R R O,

“TAT &
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For the asymptotic analysis we write

2(1-8)N uN
1
gv) =¢ +o9 9,
In F
Tng N0
If 0 < v < Vo? gW) =z o for large NO’ which 1is decreasing with v.
2(1—3)N0v'2
If v > Vo» gv)~ 0o , Which increases with v. Hence vo is

the asymptotic value of the optimal V. For large N equation (5.18)

has only one solution, vl and v3 will approach to vo from left and

right respectively.

Remark 2. a_ . and F_, are the function of d, = pd, and F
—_— min min 1 min

F(dl’amin (d;.

We see that

d,) =

F' )
min 91 (d ) F) >0

d o’ o= oin

and Fmin is increasing function of dl' If o0 and d small, we can
choose small y; hence we can reduce the number of degrees of freedom of
Sg’g’l(ﬂg). The value d 1is related to the function wu(x,y) and p is

related to the mesh.

Remark 3. The mesh Q*; with the irregular points can be used analogously.
The results are then quite the same as for the triansular mesh we. analvzed

above.

Remark 4. The technique we used for the adjustment of two adjacent elements

can be directly applied to satisfy homogeneous (or polynomial) boundary condition.
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So far the singularity of the solution occured in one vertex only.

The general case can be easily treated.

1A

i 4 and

IA

2 -
Let u € BB(Q) with § = (61,82,83,84), 0<B, <1, 1

IA

Q= (0,2) x (0,2). Divide @ into four subdomairs mQ, l1<m<4 such

that on each 'R the function u has only one singular point, and apply

Theorem 5.1 on mﬂ, l<m=<y4. Let Q; be the union of the geometric
M
meshes LQg on 'R, lsm<4., Let P = (1 2 3P 4P) and Q = (19_,29_,3_‘ Z‘g)

be the union of mg and mg, 1 =m=4, each mg and mg be defined as
before. Thus for the mesh Qz and degree vectors P and Q (see Fig. 5.5)
we have

Theorem 5.2. Let & = (0,2) x (0,2), Qg, P, Q be defined as above.

If ueBl (@) with B = (8,,8,,85,8,), 0< B, <1, 15154, then for

8,d
any 0< o< 1, there exists a piecewise polynomial Y (x,y) € s 8 (QO)

such that

_le/3

2
lu-pl®, = ce
H™(Q)

where

1
with constant C independent of N and b = 2(1-8)1n ) /3

B = max By U = max(l,u) and p satisfies (5.15). g
1=i<4

We shall now briefly address the geometric mesh on a parallelogram
domain , which is the image of geometric mesh on square under a linear

mapping. Let M be a mapping of standard square S = (0,1) x (0,1) onto Q:

PRE ARV A N P R
.-,_.\\A A \.‘AA.\"\ "\.

AN
-:'\.'. < 4



Y
A

g= 0.5

n=3

0<Bi<l l<i=<yg

Figure 5.5

Geometric Mesh on a Square
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(5.18) x =af +bn cos w

y = bn sin w

with Jacobian = a b sin w. The inverse of M 1is given by

(5.19) g = wl(x,Y) (x -y cot w)/a

n= wz(x,y) = y sin w/b

where  is the interior angle of § and a, b are the lengths of the
sides of Q shown in Fig. 5.6. Let Q; = M(Sn), where Sg is the
geometric mesh of square S (see Fig. 5.2).

Let SB’Q’I(QE) be the subspace of continuouz and piecewise polynomials

p(x,y) € Hl(Q) such that

£ m . . .
¢|Qk = ) Cz,mwlwz for 1<k<3,2<i=<3 2<j<n+]l,
1,3 O<f=p, josmsqi j
b ’

and

n
N
-
w
-

6] = ¥ C, Wi¥y for i=1,1=jsn+1 and i

Q =
i, << , O=m=<
j 0=t Pij 4y 5 5= 2.

The number of degrees of freedom of 52,9,1(52) is defined as the number

- e~ a" P T L SR TR . " A" a"e"® "2 e "N " A" N" R 0" " w"¢"n"a "
P T e i i e IR i i CO S S S SR L S RS IRt -
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of degrees of freedom of Sg”g’l(ﬂg) and denoted by N. We have the

following theorem

Theorem 5.3. Let Q be a parallelogram shown in Fig. 5.6 with interior

angle w, 0 < w < I Then for any u € B2 () with ¢, = rB, 0<RB< 1,
2 B8,d B
and 0 < og<], there exists Y(x,y) € Sg’g’l(ﬁg) with the degree vector P
. . _ _ - -k _ k_ .
and Q in which P~ 9,1 " 1, Pig = 9,5 T Piy = 9, max (2, [jul),

j 22 and ) satisfying (5.15), with d replaced by d = dv/2 max(a,b)/

min(a,b) such that

1/3
la-o?, = ce™
H(Q)
. 3 3. 1 -
with b = 2(1-B) (—35 In 5 W = max(l,u) and constant C independert of N. [
7u
. hy
bsinw |

obsinw |
o?bsinw}
odbsin w}
Figure 5.6
Geometric Mesh on a Parallelogram
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6. GENERALIZED GEOMETRIC MESH AND ITS APPROXIMATION PROPERTIES

In this chapter the generalized geometric mesh with triangular and quadri-
lateral, curvilinear triangular and curvilinear quadrilateral elements will
be employed on polygonal domain  contained in the unit disk centered at
the origin which coincides with one of the vertices of (. We need to

redefine mesh Qg and space SB’Q’I(Q;).

Let 9" ={Q. ., j=1,2,...,n+l, i=1,2,...,1(j)} be a partition of

1,]

{0 satisfying the following conditions:

1) Qi j's are quadrilateral or triangles (curvilinear quadrilaterals
>

or triangles). The intersection of any two Q, . 's is one common vertex, or
b
one entire common side or is empty;

2) Let hi and Ei j be the maximum length and the minimum length
b4

of sides of Qi i and for all 1i,j there is a constant A such that

6.1 h, /h, .= 2;
(6.1) i,j —1,.3 A
3) lLet M= (Mi y? 1=1i=1(j), 1= j=< n+1) in which Mi i is a

one-to-one mapping of standard square S = (0,1) x (0,1) (resp. standard

triangle T = {(§,;n) |0<n<1-¢, 0<g<1l} onto § . If P, and

-1 -1
YR denote the vertices and sides of Qi,j’ then Mi.j(PQ) and Mi,j(YQ)
are the vertices and sides of S, 1= 2 =< 4, Moreover, Iif Mi ; and
M map standard square onto two elements ), ., and with common
m,k 1,] Z,k

, _ . . -1 w1
side vy = AlA2 then for any A € v, dlst(Mi,j(A), Mi,j

-1
= i M A [
(a0)) = dist( m,k( )
M;lk(Ag)), 1l =24 =2. It is assumed that the mapping can be written in the

form

é&,m

x = X
1,3

(6.2) on S(resp. T)

y = Yi,j(i,n)




with xij and Yij being smooth functions on §,

2

(6.3) I0%]. %] < Chy la] =2

and

(6.4) clgi’j s34 s Czhi’j

where Ji,j is the Jacobian and the constants C, Cl and C2 are independent
of 1i,j.

The mesh Q; (0 <g<1l) 1is called the geometric mesh if in addition the

following condition is satisfied:

&) If di, ., denote the distance between the origin and Q',j’ then
6.5) o™ < d; 4 <o “+1_j, 1<j=<ntl, 1=1i=sI(3),
(6.6) di,l = 0, l<i=<I(p,

(6.7) Kldi’j < p_i,j < hi’j < szi’j for 1=1i<1I(j), 1< j<ntl,
(6.8) 1<30n+1 = hi,l < hi,l < Kaon for 1=1i=1I(1)

where Ki, 1l =1i=4 are the positive constants independent of i and j.

1,]
1=j=ntl) be the degreevectors with integers p,
i

Let P=(p, ., 1=1i=I(j), 1<j=ntl) and Q = (qi j? 1=1i=1(5),
,

,a, .20,
37 91,3

]

We define the subspace SB’Q(Q;) as in [9]
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OloGey) = o, (O Goy) for x €9 o 6 L(Em)

is the polynomial of degree spi j in ¢ and of degree

<l
_qi,j in n on S}

and 5319’1(92) - 3399<Q§) nut@), §399»1(Q;) - 53»9»1(92) n @)

where HY(Q) = {u]u € @), uly, = 0F.

Remark 1. Denoting U = u(Mi j(E,n)), (6.3) implies that for |a| =1

o -l
(6.5) D% = Chi,j([UE[ + [ ) on s,
and for J|al =2
G| < a2 .
(6.10) |ID7u| = Chy " (|U£€| + |Lnn[ + |U£n| + |Un| + ]Ugl)-
Remark 2. If Q ., 1is a triangle,(6.3) and (6.4) are equivalent to the well

i,j]
known angle condition:

(6.11) 0 < W, Sw=ET- wy < for all interior angles w's of Qi -

Remark 3. The geometric mesh Qg was designed for the approximation of the

B

functions u € B2 (Q, ¢, = r . In an obvious way the mesh can be designed

B’d B \I 8
for the approximation of functions u € B2 @, o, =TT r.i
B,d 8 i=l 1
Lemma 6.1. Let Q be a curvilinear quadrilateral (resp. triangle), h be
the length of the longest arc, and let M be a one-to-one mapping of standard
square S = (0,1) x (0,1) (resp. standard triangle T={(£&,n)|C=<E <n, 0<E£<1i})

onto & gilven by

LIPS AN L 1) ") = FITRCIPRE S AN TR IR Y -'L-j-‘LA.' “a g .\'\A > AR Y ‘1\" .L‘-\‘.L‘" .A-.l Y 2% ..A-.!“'

o
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]

$(&,n)
(6.12)

p(g,n).

]
]

Assume that for any a, ja| =1

(6.13) D%, |p%y| = alelp,

Then for U(E,n) = u(o(g,n), Y(&,n)) and ’al =k

k 2
- k h™ (k-1)!
(6.14) ||o%U|| 0 0 < (34" )  max {/IpHul] 0 }-—?é:IY%—
H (S)(resp. H (T)) 2=1 |u|=2 H () ’
where 1 is the multi-index (ul,uz).
Proof. Let us first show that for |q] =k =>1
k -
k
(6.15) o= ] T oMwet®
=1 L H,a

EEs

2 . , — .
where S is a set of pairs = ( ) u > 0 integral, + =
P u up,uq Mo Uq : g Up Uq
such that

57 = (1,00 U (0,1)

k+1 k k
6.16) S = , -1, s, ,u-1) ¢s
( ) {(up uq)l(up uq) € (up Mg ) €S}

S consists of pairs which are in general repeating. For example

(2]
"

{(2,0), (1,1), (1,1), (0,2)}

{(3,00, (2,1), (2,1, (1,2), (2,1), (1.2), (1,2), (0,3)}.

w
]

The values (up.uq) are the numerical values of the a1 pair U  and the

different pairs can have the same numerical value. Further we will




TR R b I I S

i I R e R I

-’..J'

., -
o

. e
W

denote lﬁw = up + uq.

k
The functions p%-i depend on the pair y (not only its numerical
?

value). For example for £ = 2, a =(1,1) we have in (6.15)

u, (2)
%) = u +u +u +u
ues ’
and hence the function QiZ) associated to the two different pairs with
O
the same numerical values (1,1) are different. In (6.15) the general form of
qu) is
Us T
51 v, 52 k.
k —_
(6.17) Qi ) . z _alu,v, .k, ,a) TT D3 ¢ -rr D J 1%
T s, +s,=|u| 33 j=1 j=1
1 °2
J+| k. =k
vy ¥l |

0
with a(u,vj,Kj,a) =0 or 1. (We used in (6.17) the notation 'Tr= 1).
1

(6.15) can be readily proven by induction. Let ¢(k,2).k = & be the

number of (additional) terms in (6.17). It is immediate that

(6.18) d(k,k) =1
and
(6.19) d(k+1,2) = Lo(k,L) + 2¢(k,2-1)

and (6.18) (56.19) gives

ok, 0) < 350572,

Hence coming back to (6.17) we get by (6.13)

—~

-~

~
A

[0 < q:(k.[il)h!“'Ak

u,a

» " - LI I - Y -
Rt AU s O CN N T T A A R T W O T RO SC RO O X
S U h S s ) N Sy S Wy e s A O s S A A v, SEL ALY ‘\'r'-.:'ﬂ:ﬂ.
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and hence
a K k T 2 k-2 I
ool 5 =GO ] max {iDul 5 W2 )
1 (S) 2=1 |ul=2 H (Q)
k X o L (k-1)!
= (34) 7} max {||pul th =, o
| 0 (2-1)!
2=1 |U|=Z H (Q)
Theorem 6.1. Let u € Bg d(Q) with @B = rB, 0<B<1l, and N be a
b
polygonal domain contained in a unit disc and with a vertex at the origin.
Let Qg = {Qi 3’ 1=i=1(j), 1<j<n+l} be a curvilinear quadrilateral |
b
geometric mesh satisfying conditions 1)-4). Assume that mapping Mi j of
9

s = (0,1) x (0,1) onto Qi

9j I

[x = ¢, .(Z,M

i,j
(6.20) in s
is such that
(6.21)
lDa(b l IDall) IE Akh for any Ial = k=1 lsiSI(j) lsjstﬂ‘l
i,j ’ i,j i,j ’ s

where A 1is independentof i, j, and k. Then there exists a function

d(x,y) € 52;9;1(93) with degree vectors P and Q in which Py

i 4,3
pj = max(2,[ju]), j =2 2, and with u satisfying (5.15), Py1=9% 1" 1
such that

1/3
(6.22) lu-ol ; = ce™¥
H (Q)
with C and b independent of N.
g LICRN LR -..~. ....................... _{.‘.‘._,‘. PR R ) *‘.;.\}\;.‘.;.\;,
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Proof. For each (i,j), U, L(EM) =u@, .(E,N), ¢ .(E,M)) is defined

- »] 1,37 i,]

on 5 = (0,1) ¥ (0,1) and by (6.21) and Lemma 6.1 the inequality (6.14) holds.
Applying Lemma 4.3 there is a polynomial $i j(E,n) of degree Py in £ and

n such that for the integer tj’ 1l = tj < pj and 0sm<=<2, j=2

t . +1+k
(p,-£)! 2(e541) Z 5 3
m
DU, =%, Dl sC ;) (II——“i” (—)
i,j "i,] HO(S) (Pj+tj+2 =2m)! %2 \ J K H(s)
13 an
t,+1+k
9 2k
NYL ¥ LR R
k £yt HO(S) 2
2% 3
by (6.14)
2(t . +1) t +3
so—si a0 h2® <(t 2t ol
(py¥eyFa-tmt 2 p=1 (-1t 1@ )
by (6.7) and because di 3 <1
i
’ 2(t ,+1) t +3
. <o gty T 2(2 -8) 1 ((t]“) 2,28
" = (p+t:+2 T2 Z =T Ky llu ”zz
h| Hy (Q)
{ Letting ¢i j(x,y) =l$i j(M;l(x,y)) for j = 2, we have by the scaling
i argument
”, 2
: D™ (u=¢. 3|
s +J HO(Q. .)
1 i,
3
t +3
< c(pj t,)! tj \3A) J d2(2-m-E) % 22((; +2)|)2”u”q
! [
(pj+t +2 -2m)!* 2 i,j P (-1)! IBL 2(9)

Let H (Q) (k=2) be the weighted Sobolev space with norm
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k
2
H GG 2 )y

uh 2 Z
ok, 2(9) fp2 TG-D

2
2,
Hé )

Since u € B; d(9) then for k = 2

fally , = cd®™? 1)1 |

Q
HB ( )

k+3,2

with d = max(1,<.d). Let T be the operator HB «Q) ~ Hm(Qi j) for

]

k s <m< =y -
l<k=s pj C=m=<2, Tu=u ¢i,j then

( (p -l ! lé_)z 2(2-m-6))1/2.

= 1), =
M Hk+3’2(9),Hm(Qi j) (p +k+2 -2m) { \ i,J
t,+3,2
Let HBJ Q) = (Hk+2 2(Q) H;+3 2(Q))e - be the interpolation space
by the K-method [10] for tj =k -1+6. Then T 1is linear operator:
Lt 43,2 0
HBJ Q - HB(Qi,j) with norm
2 2 9 1-9\2
Hy (Q),H (Qi,j)

P(p -t +1)
F(p +t +3 2m)

) % d2(2-m-B)

(see the proof of Theorem 4.1). Thus for a real number tj’ 1=t,=p

h| h|
T'ép c +1)
2 -
(6.23) HDm(u-¢i,j)HHo(Q ) = r(pj+{j+3 2m) 2) de(z ™8 o [E4¥352
1,3 Hg ¢
By (2.3)
: (6.24) loll ¢ 4y, =cel/?d e P(tj+2)
il @

......................................
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~

For j =1, ¢i 1 1s always chosen as bilinear interpolation of Ui 1 a3t
» ?
~ -1
vertices of Qi,l' Letting ¢i,l - ¢i,l(Mi,l<x’y)) we have by Lemma 3.6
and the standard scaling argument
ha-s, I = clu, =6,
1 1
Ly, 1.1 1 (s)
i,1
=clu, -4
1031 ¢ilH2’2(s)
B
~ 1\6 ~ R R "1
where QB =r”, r 1is the distance between point (&,n) € S and Mi 1(0,0),
and
l 3
Wy <
i,1 8 i,1

To achieve continuity of the polynomials on two adjacent elements we use the

same procedure as we used in the previous chapter. We construct in this way

the function ¢ € Sg’g’l(Qg) such that

I(1)

2(1-8)
(6.26) lo-ol®, =c{} h lu|?
it (@) izl i1 B>’ 2(Q)
2:. I'(pj-t.+l) -
+ ) 4 T(p,+t,-1) ‘(1 B)” W t.+3,2 }
1=5=1(3) h I | o~ %5 @
1<j<n+1 B
¥ n+l Pj
> < ~.2(1-B) (n+2) . .\ |Fad,a) |
: = Co {r(v) + jzz () 22(1%8)3 P}
' Ll ) ad \2@
e where t, = 0,p,, and F(d,,a) = ( j It has been proved that
! i U1t 1 () OV 2

| A

e s Ty v
a [

|
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”u‘d’“‘]_ = CRo
H (Q)
. 1 1
-20-8) (Zpt? by /3
< Ce u
with C independent of N and u = max(l,u). O
2 B8
Theorem 6.2. Let u € BB d(Q) with ¢B =r,0<Bf<1l, and Q be a

i . =
man F(dl o) F(dl, > mnin
/ ot

It can also be shown by (6.5), (6.7) and (6.8) that I(j) =<K, for

1<3j=n+l and some K > 0 independent of N. Letting

1 2
o, = max{p—, —_—
I it (3ad) 2

(5.15) we have from (6.26)

},» p, = max(2,{jul), j = 2 with pu satisfying

2(1-B8) (n+2)

polygonal domain § contained in a unit disc and with a vertex at origin.

Let Qg = {Qi 5’ 1=1i=<1(j), 1 23 <n+tl} by a curvilinear triangular
?
geoemtric mesh satisfying conditions 1)-4) in Section 4.4. Assume that the

mapping M, ., of T = {(g,n) |0<n, 0<E, E+n<1} onto Q, .
1,] i,]

x =0, ;(Em
in T

y = Cbi,j(E,n)

is such that

0,

Ip%o ||

Ol .
i’jl, |D wi,j] <A hi,j for any o] =k =1, 1=1i<I(j), 1<j<n+l,

where A 1is independent of i, §j and k. 1In addition assume thLat Hi .
»J

can be extended to standard square S =(0,1) x (0,1), Mi (S) ¢ @ preserving

»3

the properties of Mi j on T and that
b4

AL A 2 AN Al o S NP A St S S N U S O S T T S T S S I SN LI TSRS SR U
LN LAY, O SN COIA T - s AT S S R RS Yo & MR
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o
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d = dist(M
1, ist( 1

S 2 d i ¢ i
j( ),0) Kg 1, for all i and ]

’

~yoAe

with constant KO > 0. Then there exists ¢ (x,y) € (SE’-(Q;)QSB’Q(QZ)) nHl(Q)

with degree vectors P and Q in which Py 3 =q 3 = pj = pj = max(2,[ju])
for j= 2 and u satisfying (5.15), pi,l = qi,l =

vectors E and § in which ;i ; =1, Ei 3 = ij-l such that
? s

1, and with degree

1/3

-b

ol ; = ce N
H(Q)

with C and b independent of N.

Proof. The proof is analogous to the proof of Theorem 6.1.

Remark 1. We assumed in Theorem 6.2 that the mapping can be extended. 1In

AN

contrast to the mapping of T where one-to-one mapping is assumed together
with condition 4) we do not need these assumptions to be satisfied on the

entire S, we need only that Mi J.(S) c Q.

[l et i) I,'-'

Remark 2. Assume that ! 1is a simple parallelogram or triangle only and
assume that u € Bg,d but such that the domain of amnalyticity can be
extended into a small neighborhood of Q. If Q is a parallelogram

and the mesh consists of one element only then the rate of the p-~version is
exponential. It follows immediately from our amnalysis. If § 1is a triangle

and the domain consists of one (triangle) element only then we cannot

conclude directly from our theory that the rate of convergence is exponential.

Remark 3. In Theorems6.l and 6.2 we assumed that the domain £ 1is a polygon.

Obviously this assumption is not essential.

---------------------------
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Remark 4. As in the previous chapters we can consider in Theorems 6.1 and

6.2 uniform degree of elements and get the exponential rate of convergence too.

Remark 5. The quadrilateral is the special case of a curvilinear quadrilateral.
Suppose that (xi,yi) are the vertices of . The mapping of S = (G,1) x(0,1)

onto § is

Jx $EM) = xp + (xymx)E + (e =x )N+ (xp=x4xy=x, )EN

¥

~

¥(g,n) v+ 0ymydE + (ymyn + (-y,4y,-y,)En.

Obviously (5.21) holds.

Remark 6. In the mesh shown in Fig. 6.1 the curvilinear triangular and
curvilinear quadrilateral elements are combined. This kind of mesh is

important in practice.
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The mapping of S = (0,1) X (0,1) onto the curvilinear quadrilateral

element M is

1
/x = 0EM = 2 hEA-9+) cos T
I\y = P&,n) = = h(E(l-q+q) sinn%

with h = qm/4 and (6.21) is satisfied.
The mapping of T onto curvilinear triangle (element 2) can be defined

in various ways. Let us mention one

- = 2 LA M _ o cos &
X $(g,n) q"(n cos 7 + Ton (cos 7 ~ N cos 4))
. .2 TLE o n
y = VE,N = q(sing+ Tom (sin =~ = n sin 2)).

Observing that

m Ty 1
(cos 7 ~ N cos 4)

and
.MM _ . W
(sin 7 ~ nsin 4)

is analytic at n =1 and we easily see that with q2 =h (6.21) 1is

satisfied. If is also easy to see that M(S) € Q (see Fig. 6.2).

Remark 7. Consider an element @ with vertices (xi,yi), 1=i<4 and

-
A s ¢ o8 4
s o te T N

OO BN ACALN

curvilinear edges Yi (see Fig. 6.3), Yi's are described by

TR S Y S TR

-
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-
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and

gi(n)

for O

IA
3
IA
b
[ s
[}

2,4

{f Q;
/\?

where 8y and fi’ 1=1i=4 are infinitely differentiable, and

i fi(n)

| ik)|, IfEk)l <h Ak, for 1=i=<4, any k20
and
|8, 8 pl» [£,7F 0| = 4h for 1 =1,2

with A = 1 independent of k, h and h being the arc length of the
longest curvilinear edges of Q. Then the mapping of S = (0,1) x (0,1)

onto { by a blending function is constructed as follows:

i Cx o= 0Em = X @AM +F,ME + X,En + ¥, () 1-5)
:

3 ~x, (1-8) (A-n) - x,E(1-n) = % Zn = x,n(1-E)
N

y = WEm = F @O0 +5,0) +5,@n + 7, ()-8

|
!
\

-yl(l—E)(l—n) - yzi(l-n) - y3£n - y4n(l-€).

-
---------------
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f’?
| y) 3 (X4,Y4)
Xg(n)
S 75(7)
) 2
o) L&

Figure 6.3

Mapping of Standard Square

Then it is easy to see that

= ) 2 g _w _ - .
¢g (1-n)x; (€) + nx,(8) + x, (M) - x,(n) + (% x,) (1-n) + (x, %05
| = 5Ah;
o]
[} ) [ %
o, = ani®P@+ P @, 0, = xV©+5"©
£ g
ld 2|, 19 ¢ | _<.2A2'h, for 22 2,
€ gn
= -N' ~ e _ + - .
¢€n x2(€) + x3(s) + (x2 xl) (xa xl), |¢£nl < 4Ah;
¢ 2 m = 0 for m=>1,2=1 or 2=>2, m=1.
gn
Similarly we can see that
e L N L e e e L A e R S R e T

-------

\\'\\-.

e




T
PR

| = 2A"h  for m = 2,
m

= 5Ah.
lo, |
These inequalities are also true for Y. Hence (6.21) holds.

Remark 8., In the theorems above we assumed that the singularities are

located in the vertices of the domain Q i.e., @B(X) = ;thc-Ai|Bi when

Ai are the vertices of ({l. Assume now that Ai are loca;ed outside of Q.
Then it is possible to show that [le| = Ce-aNl/z. This rate of convergence is
achieved by the p-version when the size of the minimal element of the optimal

mesh is not going to zero as p + o,
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: 7. NUMERICAL RESULTS
In this chapcer we will discuss the numerical results for the solution
of a model plane elasticity problem. We selected the model of a cracked panel
loaded by such tractions that the exact solution is the first and second mode

of the stress intensity factor solution. This problem was selected because

;} it characterizes the difficulties cf the usual engineering problems. We will
compare the performance of the h, p and h-p versions of the finite

‘ element method by focussing on the accuracy measured in the energy norm.

s

E; The purpose of the numerical computation is the following:

: 1) Our estimates are upper estimates which have asymptotic character.
hi It is important to see the numerical behavior of the error, its asymptotic
- range, the size of the constants characterizing the error and the maximal

- accuracy which is practically achievable.

2) The h-p version is characterized by the mesh factor ¢ of the
geometric mesh and the degree factor U governing mesh size and the growth
of the element degrees, respectively. Numerical results will show the
sensitivity of the accuracy on ¢ and 1y, the values of the optimal factors

0 and U leading to the highest accuracy.

3) Our theory does not allow us to distinguish between performance of
elements of various type, the curvilinear and rectangular (resp. triangular).
The computer time is smaller for rectangular or triangular elements than for
curvilinear elements. Therefore the question arises wiether curvilinear
elements in the neighborhood of the crack can improve the accuracy because the

singularity has radial character.

4) It is known that the p-version is very insensitive to the size of the
Poisson ratio (nearly incompressibility) (see {8 ], [22]). Numerical

solution will show the effect of the Poisson ratio cn the accuracy of the

D L R U

LN . N e
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solution in the case of the h~-p version,

5) The standard finite element programs are based on the h-version
with low order elements. Several hundred finite element programs have
already been developed. One of the most popular packages is NASTRAN
in its various versions, for example MSC/NASTRAN. Other widely used packages

are for example, ADINA, ANSYS, STRUDL, GIFTS, PAFEC, etc.

There is only one code based on the p and the h-p versions, the
code PROBE. The architecture of this program is different from the above
mentioned. It utilizes the hierarchic type of elements, computes simul-
taneously solutions of different degree elements, etc. We will make some
(crude) comparison of computation by PROBE with the Ihversion.

The theory and computation addresses only the performance with respect
to the error measured in the energy norm. Alihough in practice other
measures are essential, the energy norm performance is obviously the starting
point of main theoretical importance.

The computation of the h-p version has been done by the program PROBE of
NOETIC TECHNOLOGIES, Inc., St. Louis. (See [21]).

The h-version computation has been done by the adaptive program FEARS
developed at the University of Maryland. (See [14] [19]).

We shall consider the plane strain problem of two dimensional elasticity
(homogeneous, isotropic material) with E and v denoting the Young's
modulus of elasticity and Poisson ratio respectively (E>0, 0=v <.5). The
domain D under consideration is a square panel with a crack as shown in

Fig. 7.1.

. e e B - B
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Figure 7.1
Cracked Panel
T11 12
Let U = (u,v) be the displacement vector, T = + be the
To1 T22

stress tensor and T be the traction vector. The displacement vector U

satisfies the Lamé-Navier equations

9_,9u , 3V

-(A+) = % + g;) - uAu =90
(7.1) in D
3 du , dv .

and the boundary condition

(7.2) T, = Tenl, =

aD 9

Ev
(1+v) (1-2v)

are the Lamé coefficients. The bilinear form associated

where n is the unit outside normal to the boundary 3D. A =

d __l_
and M = 30+0)
: with (7.1) and (7.2) is

- e . P S,
--------------
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ow ow ow ow
dgu 1  av 2 A du . 3v 1 2
3 = e v Iy Gt e ==
(7.3) B(U,W) fD WGy Yayay ) TGk Yoy Gx T ay )

ow ow
U (dv , du 2 1
+ 5 (ax + 5;)(ax + 3y ) }dxdy

. 1
with U = (u,v), W= (wl,wz)_€ H (D) x Hl(D) and the linear functional

F(W) = f (f.w, + £ w ) ds.
a0 11 22

The weak solution U € Hl(D) x Hl(D) satisfies

(7.4) B(U,W) = F(W) for any W ¢ H (D) x H (D).

The strain energy functional G(U) is

N E .2 . Bvy2 du 3v
(7.5) G = 3 C1=29) (139) L) {@-wGP™ + (BY) )+ 2v o 3y
+ ———1'22" (—g—;l + %;-:—)z}dxdy
= E’B(U,U).

We will consider problem 1 and problem 2 when the imposed tractions

lead to the symmetric and antisymmetric mode of the stress intensity

solution. For both modes i = 1,2 the solution has singular behavior at

the tip of the crack (sece [19]).

u, ~ rl/

2
i ¢l,i(9)

~ J1/2
v, Rr ¢1,i(6)

3/2-¢ 2 1
and hence u_,v, € H / ), >0, and u,, v, € H ’Z(Q).'— < B < 1l.
1774 1° 1 -8 2
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The solution of Problem 1 has to be augmented by the conditions

ul(0,0) = vl(0,0) = 0

fixing the rigid body motion. For the solution of Problem 2 we impose the
conditions
uz(O,C) = VZ(O,O) = vz(-l,O) =0

fixing the rigid body motion. The strain energy of true solutions U, for

E=1.0 and v = 0.3 is

G(Ul) = 0.6017796916, G(UZ) = 0.2370646876.

' By Ué, i =1,2 we denote the exact sclutions and by U;E’ i=1,2,
-

the finite element of Problem 1 and Problem 2. The error of the finite element

solution will be

i i
! (7.6) ei Uo - UFE'
&
T
&
.' The energy norm of the error ”ei”E is directly related to the strain energy
- of the exact and finite element solution
9
1 2 i i 1 i i i i
3 . = - = = - U
(7.7 ”ei”E G(UO) G(UFE) 2(B(UO,UO) B(UFE FE))

and the relative error in energy norm is defined as

: e,
. (7. 8) legllg & —-i—E—

1/2 « 100%.

(U)

We used geometric meshes with the factor o for the p and h-p version

and studied the performance of two types of meshes A and C shown in

Fig. 7.2 and Fig. 7.3.
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Let us mention that the size Hmin of the smallest element is 05.

For 0 = .15 weget h ., = ,759 X 10-4 and for ¢ = .08 we get h =
min mi

.327 % 10--5 with hmax = 1. The ratio between the size of the largest and

n

smallest element is hence more than 105. The computation has been performed
by the PROBE program with uniform degree of elements in double precision on
Appolo 420 (work length of double precision is 15 decimals). The computation
for the h-version was implemented by the program FEARS on UNIVAC 1100 (in

single precision). By N we denote the number of degrees of freedom.

As indicated in the previous chapter there are some constant b and C

independent of N such that for the h~p versions we have

P Vi
leflg g s—3—e ', i=1,..
S v

Il

(7.9

Table 7.1 and Table 7.2 show the relationship between ”ei”E,R’ and
N, p, n, onmesh A with 0= .15 and u =1 (i.e., p = n). The
relationships are plotted in Fig. 7.4 and 7.5 on Iln~cubic root scale. The
curve of the h-p version is almost a straight line which is the envelope of
six curves of the p-version for 1 < n = 6. This means the asymptotic

property is achieved already for n = p = 2. The constants bi and C

i’
i = 1,2 are numerically given in the tables. For p = 6 we have b1 = 0.670,
C C
b, = 0.668, and —~— = 1.688, —2— = 1.306.
2 Jug Iv3
"F0"E 0"E

In Fig. 7.6 we show the dependence of the error on C¢. We see that the
best value of O 1s close to (/5—1)2 = 17 which is the theoretically
optimal value in one dimension (see [16]).

Fig. 7.6 shows the dependence of the error on U characterizing the

relation between n and p.
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TABLE 7.1
Relationshio between llel"E,R'N'n'p'bl and > for the h-p version

. Prcblem 1 (E=1,v=0.3) on Mesh A,0=0.15,u=1
1/3 Cy/ il
Mesh P N N ledde.r ® | By 1 lugn e |
A 1 9 2.08f 60.92 L7641 1.455
A, 2 48 3.63| 20.23 .740 2.303
Ay 3 121 4.95 7.61 .776 2.098
A, 4 256 6.35 2.57 .720 1.810
Ag 5 477 7.81 .90 .670 1.683
Ag 6 308 9.31 .33 .670 1.688
TABLE 7.2

Relationship between uezuE,R'N'n'P'bz and C, for the h-p Version

Problem 2 (E=1,v=0.3) on Mesh A,0=0.15,u=1

3 Mesh | P N /3 le2le.r ¢ | 2 wiie
A 1 8 2 43.74 .626 | 1.664
A, 2 47 3.61 15.97 .742 | 1.781
A, 3 120 4.93 5.91 772 | 1.592
A, a 255 6.34 2.02 .718 | 1.395
Ag 5 476 7.81 71 .668 | 1.309
Ag 6 807 9.31 .26 .668 | 1.306
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Table 7.3 gives the values of bi and C,- We see that the value
R =1 1is the best one and the sensitivity of the error on U 1is not large.

The results for Problem 1 and Problem 2 are very similar. Problem 1 has

been computed with meshes A and C. To achieve the same accuracy, mesh C

aQ

required more computer time than mesh A.

It has been observed and rigorously analyzed in [8],[22] that the

T T

p-version is insensitive to Poisson ratio v. Numerical results show chat

« ..

the h-p version is insensitive to change of Poisson ratio v. In Fig. 7.8

the curve for v = 0.49 is almost parallel to that for v = 0.3.

The comparison of any codes is a very delicate question because of the

aims of computation, the reliability of the computed results, the ratio between

!
8
.
.
S
2
¥

the human and computer cost in the project, etc.

We address here crudely the cost of achieving the same accuracy by the
h-version (elements of degree 1) with nearly optimal mesh and h-p version
with nearly optimal mesh and degrees of elements. The comparison is based on
the computation of Problem 1 program FEARS and PROBE (see Fig. 7.9).

The error of the h-version with the optimal mesh is asymptotically (p = 1)

-1/2
ey ~ cNTHZ,

and for the h-p version we have
1
lell ~ ;e :

The computer cost for the h=-version is roughly

.l

W = C <+ DN

. - .- e PR R N -_- - T N R R A I RO
e A N A T e L N AN Ay A “
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TABLE 7.3 |
Relationshkip between Coefficients bi’ci (i=1,2) and u

Problem 1 and 2 (E=1,v=.3) on Mesh An,c=.15 lkng6

" 1 0.8~1.0 1.0~1.2 | 1.2~1.4 | 1.4~1.6
P n n-1 n+l n+2 n+3
b, .670 .718 .680 674 .667
C./y..1
U ffugh g 1.689 2.42 2.330 3.281 4.778
b, .668 .654 .683 .680 .664
C./y..2
2" Jlugl ¢ 1.306 1.206 1.917 2.734 3.563
N
25 I00 200 400 600800
1§ i | | ] I 1 1 §
50 .‘\\ *———o—o —=-|
! v=03
> —--—-o
N a® 20 v=049
A e I0 w
lJ - “3 —N
= 5 [
N 3 —
= 3
| 3-5
05 o — 1
Q2
-7
| 3 5 7 9
Nl/3
Figure 7.8
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-

PN A

-

?

with ah = 1.5~ 2. FEARS uses elimination method and o 1.9. For the

h%

h-p version in our case the total number of arithmetic operations is

:“‘
‘\

[y
o
i
-

asymptoicically

W = C+ DN7/3
when Nl/3 independent matrices (condensation) of order p2 = 0(N2/3) are
decomposed and additionally a band matrix of size N2/3 and band O(Nl/S)
is decomposéd. PROBE uses the front solver. The cost of computation of the

/3

. . . 7 . .
microstiffness matrices is also O(N ). The main cost is in the data

management.

Assume that effectively

=
N
2
Q
=

gt n
MISENE]

. .'-

for the h-version with optimal mesh and

+ e v
.8,y

B
W o on P

~

for the h-p version with optimal mesh. We can compute

In N (g)
Y(e) = —h

In Nh,p(E)

which is the ratio between ah and Bh b leading to the same accuracy for
’

given relative error €. By Nh(e) (resp. Nh p(e)) we denote the number

of degrees of freedom for achieving the desired accuracy. Toble 7.4 shows the
d €).
accuracy €, Nh(e), Nh,p(e) and Y(g)
The hierarchic structure of the elements leads to hierarchic elimination

so that the computation of lower degree elements (for fixed mesh) is obtainable

by O(N) operation.
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Comparison of the Number of Degrees of Freedom for fle_||

TABLE 7.4

M S

T Y™ vy

1

- T

E,R

€7

between the h-Version with Optimal Mesh, and the h-p Version with

e . XY WY TV YT T T ¢

Mesh A, , 1<n<6,0=.15,u=1 on Problem 1 (E=l,v=.3)
€ 30 20 10 5 3 1 0.5 0.33 0.1
Nh(e) 56 118| 446 | 1397 3 883 |34 945 139_782 320 8923 494 513
i
Nh,p(E) 29 48 96 165 232 450 657 808 I?EZJ
¢ (e) {1.195 {1.232] 1.337]1.418] 1.517 1.712 1.826 1.894 2.087
TABLE 7.5

Estimated Error of the h-p Versien

Problem 1 (E=l,v=.3) on Mesh An,léns6,0=.15,u=1

\ % N
n | Hlellg telly | lelig x s{liel g 5 % Cllelig-lelg)/liell g3
1| 2.9596e-1| 2.9662E-1] 60.83 | 60.92 .2189
3| 9.8774E-2 | 9.8511E-2| 20.28 | 20.23 -.2669
3| 3.7033E-2 | 3.705se-2|  7.606 |  7.611 .0606
| 1.2489e-2 | 1.2500E-2]  2.565|  2.567 .0926
* *
5 | 4.3359E-3 | 4.3691E-3 .891 .897 .6689

* For n=5 the ratio A(4)/A(5) is usedin formula (7.13) and (7.14%)
instead of A(5)/A(6).
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Table 7.4 shows that 1% accuracy is very expensive to get by the

h-version with the elements of degree 1. The accuracy 0.5% 1is probably
not achievable at all. The h-p version allows us to use a relatively very

small number of elements to obtain high accuracy.

The mesh design, although critical, is not too dependent on the
geometry provided one is refining the mesh geometrically with ¢ = .15
around every singular point.

In practice the true solution U is unknown, but error measured in

0

the energy norm can be estimated from the energy norm of the finite element

on Mesh An’ l1<n< 6.

2
and E(n) = || Upgl g

2
ol £
By (7.1) we have for any u > 0 asymptotically

solution. Let Eo = ||U

E(n) = EO - Ce-bn.
Therefore
<bn,, -~b
A(n) = E(ntl) - E(m) = Ce ~(i-e ),
A(n)
b = ln A(n+l) ’
- . A(n) A(n+1)
~, 2 A(n)
(7.10) ellg = NotD)
T A(n) )

is the a-posteriori estimation of the accuracy. Further

(7.11) IIZ”E R - ”eﬂaz 12 *” Egl) 1/2 = E(n) - A(n+l) /2 °
’ (E(m)+[€] ) <1+,,J”‘z> 5y ¢ =2ty »
liellg
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Table 7.5 shows that the true error in energy norm is estimated by
lell ~1E1
Tel_

”;”E with = 1%. Such high reliability of the error estimation is
achieved for every n because the h-p version has exponential rate of
convergence for very low n and p and stably maintains this behavior
through all n.

Although the above numerical results are in no way exhaustive, they
do suggest the following:

(1) The exponential rate of convergence of the h-p version agrees in
practical accuracy range with that predicted by the asymptotic approximation theory.
The asymptotic rate can be achieved by low p and n, e.g. n=p=1,2,

(2) The coefficient b 1is related to singularity as well as the
factor 0 and u. It seems that o & 0.1l5 is an optimal one. Optimal
M for uniform p depends on o0, B, d mesh as well as N. The computation
on mesh An’ 0= .08, 1=<n=<6 and mesh Cn’ g=.15, 1 =<n =<6 shows
that optimal W increases with N. If the asymptotic value Moy of the
optimal p 1is known, one should select a value for u 1less than Mg*

3) As the p-version, the h-p version is insensitive to change the
Poisson ratio in plane elasticity equation. For Vv near 0.5, the
exponential rate of convergence can be achieved for some low n and p.

The :urve of the h-p version is shifted to the right without affecting the
coefficient b;

4) Since the exponential rate is achieved for low n and p, the
a-posterior error estimate coincides with the true error very well from low
p and n to high p and n.

5) If a higher accuracy is required then only h-p version is a

practical method.

\-‘ oo -" ..i‘“n‘
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The Lahoratory for Numerical analysis is an integral part of the
. Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

° To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

. To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

e To provide a limited consulting service in all areas of numerical
nathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

® To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

®¢ To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. BabuBka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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